Naut ilus
 Pressure and vacuumswitches Anal og pressure sensors

單接點式

XML－AM01V2S11
$-0.28 \sim-1$ bar（－4．06～－14．5psi）
XML－A035A2S11
1．5～35bar（21．75～507．5psi）
XML－A070D2S11
5～70bar（72．5～1015bar）
XML－A160D2S11
10～160bar（145～2320bar）
XML－A300D2S11
20～300bar（290～4350bar）
XML－A500D2S11
30～500bar（435～7250bar）

雙接點型號為XML－B

Electromechanical pressure and vacuum switches

Nautilus ${ }^{\circledR}$
For control circuits, type XML

Function

Pressure and vacuum switches type $\mathbf{X M L}$ are switches for control circuits.
They are used to control the pressure of hydraulic oils, fresh water, sea water, air, steam, corrosive fluids or viscous products, up to 500 bar.

XML-A pressure and vacuum switches have a fixed differential and are for detection of a single threshold.
They incorporate a $1 \mathrm{C} / \mathrm{O}$ single-pole contact.
XML-B pressure and vacuum switches have an adjustable differential and are for regulation between 2 thresholds. They incorporate a $1 \mathrm{C} / \mathrm{O}$ single-pole contact.
XML-C pressure and vacuum switches have an adjustable differential and are for regulation between 2 thresholds. They incorporate $2 \mathrm{C} / \mathrm{O}$ single-pole contacts.
$\boldsymbol{X M L}-\boldsymbol{D}$ pressure and vacuum switches are dual stage switches, each stage with a fixed differential, and are for detection at each threshold.
They incorporate $2 \mathrm{C} / \mathrm{O}$ single-pole contacts (one per stage).

Setting

When setting XML pressure and vacuum switches, adjust the switching point on rising pressure (PH) first and then the switching point on falling pressure (PB).

Pressure and vacuum switches with fixed differential, type XML-A

Switching point on rising pressure

The switching point on rising pressure (PH) is set by adjusting the red screw 1.

Switching point on falling pressure

The switching point on falling pressure (PB) is not adjustable
The difference between the tripping and resetting points of the contact is the natural differential of the switch (contact differential, friction, etc.).

Pressure and vacuum switches with adjustable differential, types XML-B and XML-C

Switching point on rising pressure
The switching point on rising pressure (PH) is set by adjusting the red screw 1.
Switching point on falling pressure
The switching point on falling pressure (PB) is set by adjusting the green screw 2.

Dual stage pressure and vacuum switches with fixed differential for each threshold, type XML-D

Switching point on rising pressure of stage 1 and stage 2
The first stage switching point on rising pressure (PH1) is set by adjusting the red screw 1.
The second stage switching point on rising pressure (PH 2) is set by adjusting the blue screw 2.

Switching points on falling pressure

The switching points on falling pressure (PB1 and PB2) are not adjustable.
The difference between the tripping and resetting points of each contact is the natural differential of the switch (contact differential, friction, etc.).

Electromechanical pressure and vacuum switches

Nautilus ${ }^{\circledR}$
For control circuits, type XML

Environment

Conforming to standards		C ϵ, IEC/EN 60947-5-1, UL 508, CSA C22-2 ${ }^{\circ} 14$
Product certifications		UL, CSA
Protective treatment		Standard version "TC". Special version "TH".
Ambient air temperature	${ }^{\circ} \mathrm{C}$	Operation : $-25 \ldots+70$. Storage : $-40 \ldots+70$
Fluids or products controlled		Hydraulic oils, air, fresh water, sea water $\left(0 \ldots+160^{\circ} \mathrm{C}\right)$, depending on model Steam, corrosive fluids, viscous products ($0 \ldots+160^{\circ} \mathrm{C}$), depending on model
Materials		Case : zinc alloy Component materials in contact with fluid : see pages 30369/2 and 30369/3
Operating position		All positions
Vibration resistance		$4 \mathrm{gn}(30 \mathrm{to} 500 \mathrm{~Hz})$ to IEC 68-2-6 except XML-ャL350000e, XML-00010000* and XML-BM030000ө : 2 gn
Shock resistance		50 gn conforming to IEC 68-2-27 except XML- L35000*e, XML-00100000 and XML-BM03000** : 30 gn
Electric shock protection		Class I conforming to IEC 1140, IEC 536 and NF C 20-030
Degree of protection		Screw terminal models : IP 66 conforming to IEC/EN 60529 Connector models : IP 65 conforming to IEC/EN 60529
Operating rate	Operating Cycl/min.	Piston version switches : ≤ 60 (for temperatures $>0^{\circ} \mathrm{C}$) Diaphragm version switches : ≤ 120 (for temperatures $>0^{\circ} \mathrm{C}$)
Repeat accuracy		<2\%
Fluid connections		G 1/4 (BSP female) conforming to NF E 03-005, ISO 228 or 1/4" NPTF (consult your Regional Sales Office)
Electrical connections		Screw terminal models : entry tapped for $\mathrm{n}^{\circ} 13$ (DIN Pg 13.5) cable gland. For an entry tapped M20 x 1.5, replace the last number of the reference by 2 (example : XMLA010A2S11 becomes XMLA010A2S12). For an entry tapped 1/2" NPT, please consult your Regional Sales Office. Connector models : either type DIN 43650 A or M12 connector (please consult your Regional Sales Office).

Contact block characteristics

Rated operational characteristics		~AC-15; B300 (Ue=240 V, le=1.5 A - Ue=120 V, le=3 A) =-- DC-13 ; R300 ($\mathrm{Ue}=250 \mathrm{~V}$, le = 0.1 A) conforming to IEC 947-5-1 Appendix A, EN 60 947-5-1
Rated insulation voltage		$\mathrm{Ui}=500 \mathrm{~V}$ conforming to IEC/EN 60947-1 $\mathrm{Ui}=300 \mathrm{~V}$ conforming to UL 508, CSA C22-2 n ${ }^{\circ} 14$
Rated impulse withstand voltage		U imp $=6 \mathrm{kV}$ conforming to IEC/EN 60947-1
Contact operation		Silver tipped contacts XML-A and XML-B : 1 C/O single-pole contact (4 terminal), snap action XML-C : 2 C/O single-pole contacts (8 terminal), simultaneous, snap action XML-D : $2 \mathrm{C} / \mathrm{O}$ single-pole contacts (8 terminal), staggered, snap action
Resistance across terminals	$m \Omega$	<25 conforming to NF C 93-050 method A or IEC 255-7 category 3
Terminal referencing		Conforming to CENELEC EN 50013
Short-circuit protection		10 A cartridge fuse type gG (gl)
Cabling		Screw clamp terminals. Clamping capacity, min. : $1 \times 0.2 \mathrm{~mm}^{2}$, max. $: 2 \times 2.5 \mathrm{~mm}^{2}$

Electrical durability

conforming to IEC 947-5-1 Appendix C
Utilisation categories AC-15 and DC-13
Operating rate : 3600 operating cycles per hour
Load factor : 0.5

XML-A and XML-B

a.c. supply $\sim 50 / 60 \mathrm{~Hz}$
m Inductive circuit lthe $=10 \mathrm{~A}$

d.c. supply =--

Power broken in W
for 1 million operating cycles

Voltage	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 2 0}$
m	W	31	29	26

XML-C and XML-D
a.c. supply $\sim 50 / 60 \mathrm{~Hz}$
m Inductive circuit Ithe $=10 \mathrm{~A}$

d.c. supply =--

Power broken in W
for 5 million operating cycles

Voltage	V	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 2 0}$
m	W	10	7	4

Nautilus ${ }^{\circledR}$

Function

The function of pressure and vacuum switches is the control or regulation of pressure or vacuum levels in hydraulic or pneumatic systems.
They transform the pressure change into an electrical signal and when a preset pressure or vacuum is reached, the output contact of the switch changes state.

Switches for power circuits

Switches for control circuits

Detection of a single threshold

Regulation between 2 thresholds

Detection of

 2 thresholdsSwitches with power electrical contacts, either 2-pole or 3-pole, designed for direct switching of single-phase or 3 -phase motors (pumps, compressors, etc.).

Switches with standard electrical contacts, designed for control of contactors, relays, power valves, PLC inputs, etc.

The switches for detection of a single threshold (fixed differential) have a single adjustable setting point (PH).
The differential between the high and low points (PH-PB) depends upon the natural characteristics of the switch. It is not adjustable.

Example: contact schematics of XML-A

1

- Adjustable value
PH = High point
--- Non adjustable value $\mathrm{PB}=$ Low point

The switches for regulation between 2 thresholds (adjustable differential) have both a high point setting (PH) and a low point setting (PB). Both of these points can be independently adjusted.

Example: contact schematics for XML-B

The dual stage switches, for detection at each threshold, have an adjustable high point setting for each stage (PH 1 and PH 2). Both of these points can be independently adjusted.

Electromechanical pressure and vacuum switches

Nautilus ${ }^{\text {® }}$

Vacuum switch
operating principle

Detection
 of a single threshold

Regulation
between 2 thresholds

Detection of 2 thresholds

The switches for detection of a single threshold (fixed differential) have a single adjustable setting point (PH).
The difference between the high and low points ($\mathrm{PH}-\mathrm{PB}$) depends upon the natural characteristics of the switch. It is not adjustable.

The switches for regulation between 2 thresholds (adjustable differential) have both a high point setting (PH) and a low point setting (PB). Both of these points can be independently adjusted.

Example: contact schematics of XML-B

2

The dual stage switches, for detection at each threshold, have an adjustable high point setting for each level (PH1 and PH2). Both of these points can be independently adjusted.

Electromechanical pressure and vacuum switches

Nautilus ${ }^{\circledR}$

Switching point on rising pressure (PH)

Switching point on falling pressure (PB)

Differential

Spread

Accuracy

(switches with setting scale)

The difference between the minimum low point (PB) and the maximum high point (PH) setting values.

Pressure switches and vacuum-pressure switches (vacu-pressure switches)
Maximum value of the operating range.
Vacuum switches
Minimum value of the operating range.

Pressure switches

The upper pressure setting at which the pressure switch will actuate the contacts on rising pressure.

Vacuum switches

The lower vacuum setting at which the vacuum switch will reset the contacts on rising pressure.

The pressure at which the switch output changes state on falling pressure.
Switches with fixed differential
The lower point (PB) is not adjustable and is entirely dependent on the high point setting (PH) and the natural differential of the switch.

Switches with adjustable differential
The adjustable differential enables the independent setting of the lower point (PB).

The difference between the switching point on rising pressure (PH) and the switching point on falling pressure (PB).

For dual stage switches, the spread indicates the difference between the 2 switching points on rising pressure (PH2 and PH1) and, for vacuum switches, the difference between the 2 switching points on falling pressure (PB2 and PB1).

The tolerance between the point at which the switch actuates its contacts and the value indicated on the setting scale. Where very high setting accuracy is required, it is recommended to use separate measuring equipment (pressure gauge, etc.).

Electromechanical pressure and vacuum switches

Nautilus ${ }^{\circledR}$

Electromechanical pressure and vacuum switches

Nautilus ${ }^{\circledR}$

Application range of pressure and vacuum switches types XML, XMA and XMX, for control circuits

On standard loads

Continuous duty, frequent switching

1Standard PLC input, type 1
2Standard PLC input, type 2
3 Switching capacity conforming to IEC
947-5-1, utilisation category AC-15, DC-13
B300 240 V 1.5 A
R300 $250 \mathrm{~V} \quad 0.1 \mathrm{~A}$
4Switching capacity conforming to IEC
947-5-1, utilisation category AC-15, DC-13
B300 120 V 3 A
R300 125 V 0.22 A
PLC : Programmable Logic Controller

Pressure switches	Application range		
XML-A/B/C/D, XMX, XMA			
XML-E			

On small loads

The use of electromechanical pressure and vacuum switches with programmable logic controllers is becoming more predominant.
On small loads, the reliability of the switches maintain a failure rate of less than 1 for 100 million operating cycles.

Electromechanical pressure and vacuum switches
 Nautilus ${ }^{\circledR}$

Selection of switch size

After establishing the type of switch required for the application（single threshold detection or regulation between 2 thresholds），the selection of its size will depend on the following criteria ：
－the differential ：difference between the high point（PH）and the low point（PB），
－the maximum pressure permissible per cycle，
－repeat accuracy，precision and minimum drift．
Examples of a fixed differential pressure switch selection，for detection of a single threshold

Principle criterion ：
tolerance to high overpressures

Example ：for a selected high point（PH）of 7 bar

XML－A010•eッe७
Differential $=0.5 \mathrm{bar}$

XML－A020•eッ＊セ Differential＝ 1 bar

XML－A035000e0 Differential＝ 2 bar

Select an XML－A010•0000（the lowest size）

Example ：for a selected high point（PH）of 12 bar

XML－A020•••••
Permissible occasional surge pressure $=45 \mathrm{bar}$

XML－A035 $\bullet \bullet \bullet \bullet$
Permissible occasional surge pressure＝ 80 bar

Select an XML－A035eeee（the highest size）

Example ：for a selected high point（PH）of 18 bar

XML－A020•••••
Adjustable， 1 to 20 bar

XML－A035 $\bullet \bullet \bullet \bullet$
Adjustable， 1.5 to 35 bar

Select an XML－A035

Units of pressure conversion table

| | psi | $\mathrm{kg} / \mathrm{cm}^{2}$ | bar | atm | mm Hg （Torr） | mm H H O | Pa |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| psi | 1 | 0.07031 | 0.06895 | 0.06805 | 51.71 | 703.7 | 6895 |
| $\mathrm{~kg} / \mathrm{cm}^{2}$ | 14.22 | 1 | 0.98066 | 0.96784 | 735.55 | 10,000 | 98,066 |
| bar | 14.50 | 1.0197 | 1 | 0.98695 | 750.06 | 10,197 | 10^{5} |
| atm | 14.70 | 1.0333 | 1.0132 | 1 | 760.0 | 10,333 | 101,325 |
| mm Hg （Torr） | 0.01934 | 1.360×10^{-3} | 1.333×10^{-3} | 1.316×10^{-3} | 1 | 13.59 | 133.3 |
| mm H O | 1.421×10^{-3} | 10^{-4} | $\sim 10^{-4}$ | $\sim 10^{-4}$ | 0.07361 | 1 | ~ 9.80 |
| Pa | 1.45×10^{-4} | 1.0197×10^{-5} | 10^{-5} | 9.8695×10^{-6} | 7.5×10^{-3} | 0.10197 | 1 |

Example ： $1 \mathrm{bar}=14.50 \mathrm{psi}=10^{5} \mathrm{~Pa}$

Electromechanical pressure and vacuum switches
Fixed differential switches, for detection of a single threshold

of the high point

Defined by the difference between the minimum and maximum high point (PH) setting values.

For a high set point (PH), the lower point (PB) is fixed and cannot be adjusted. For a low set point (PB), the higher point (PH) is fixed and cannot be adjusted.

PH - PB = natural differential
The difference between the switching point on rising pressure (PH) and the switching point on falling pressure (PB).

This point is not adjustable and therefore, the value of the differential is fixed. It is the natural differential of the switch (contact differential, friction, etc).

- Consider a switching point on rising pressure (PH) of 40 bar (set value at which the contact will change state on rising pressure).
- It can be seen that the switching point on falling pressure (PB) is 28 bar (fixed value at which the contact will return to its original state).
Conclusion :
- The differential will be 40-28=12 bar.

Operating curves (continued)

Electromechanical pressure and vacuum switches

Adjustable differential switches, for regulation between 2 thresholds

[^0]

Defined by the difference between the minimum and maximum high point (PH) setting values.

The pressure at which the switch output changes state on falling pressure.

The adjustable differential enables the independent setting of the lower point (PB).

> Low point < High point PH $-\mathrm{PB}^{\prime}=$ maximum differential PH $-\mathrm{PB}^{\prime \prime}=$ minimum differential

The difference between the switching point on rising pressure (PH) and the switching point on falling pressure (PB).

Note : the low point can be set at any value between PB' and PB".

- Consider a switching point on rising pressure (PH) of 22 bar (set value at which the contact will change state on rising pressure).
- It can be seen that the switching point on falling pressure (PB) can be between 4 and 19 bar inclusive (set value at which the contact will return to its original state).
Conclusion
max. differential will be 22-4=18 bar, - min. differential will be 22-19=3 bar.

Operating curves (continued) (switching points on rising pressure)

Electromechanical pressure and vacuum switches
Dual stage, fixed differential switches, for detection at each threshold

Adjustment ranges of
the switching points
PH1 and PH2 on rising pressure

Example :

Determining switching points on rising
pressure of the 2 stages

[^1]Defined by the difference between the minimum and maximum high point setting values of each level (PH1 and PH2).

The upper pressure setting at which the pressure or vacuum switch will actuate contact 2 on rising pressure.

Adjustable throughout the range on rising pressure.

The upper pressure setting at which the pressure or vacuum switch will actuate contact 1 on rising pressure.

PH1 < PH2

PH2-PH1' = maximum spread
PH2 - PH1" = minimum spread
The difference between switching points PH 2 and PH 1 on rising pressure.

Note : switching point PH1 can be set at any value between PH 1 ' and $\mathrm{PH} 1 "$.

- Consider a $2^{\text {nd }}$ stage switching point on rising pressure $(\mathrm{PH} 2)$ of 20 bar (set value at which contact 2 will change state on rising pressure).
- It can be seen that the 1 st stage switching point (PH1) can be set between 4.5 and 17 bar on rising pressure.

Conclusion:

the maximum spread will be :
$20-4.5=15.5$ bar,

- the minimum spread will be :
$20-17=3$ bar.

Operating curves (continued) (switching points on falling pressure)

Electromechanical pressure and vacuum switches

Dual stage, fixed differential switches, for detection at each threshold

Adjustment range of the high point (PH1 or PH2)			Defined by the difference between the minimum and maximum high point (PH1 or PH2) setting values for each stage. For a high set point (PH1 or PH2), the lower point (PB1 or PB2) is fixed and cannot be adjusted. for a low set point (PB1 or PB2), the cannot be adjusted.	
Switching point on rising pressure (PH1 or PH2)	$\sqrt{\\| E}$		The upper pressure setting at which the pressure or vacuum switch will actuat the contact, for each stage, on rising pres- sure Adjustable throughout the range on rising pressure	
Switching point on falling pressure (PB1 or PB2)	$\sqrt{\mid E^{-p H}}$		The pressure at which the switch contact pressure. . The lower point (PB) is not adjustable and is entirely dependent on the high point (PH) setting and the natural differential of the switch.	
Differential			PH - PB = natural differential The difference between the switching point on rising pressure (PH) and the switching point on falling pressure (PB), for each stage. This point is not adjustable and therefore, the value of the differential is fixed. It is the natural differenial of the switch each of its 2 stages.	
Example : stage 1 = segment EF stage 2- segment GH			For stage 2 (segment GH) pressure $(\mathrm{PH} 2)$ of 20 bar (set rising which contact 2 will change state on - It can be seen that the switching point on falling pressure (PB2) is 14 bar (fixed value at which contact 2 will return to its original state will be 20-14 = for stage 2 , the differential Repeat the same procedure for stage (segment EF). (segment EF)	

[^0]: 1 Minimum differential
 2 Maximum differential

[^1]: 1 Maximum spread
 2 Minimum spread

